6.1

1. **Multiple Choice** For this geometric sequence: \(-5000, 500, -50, \ldots\); which number below is the value of \(t_9 \)?

 A. 0.0005
 B. -0.0005
 C. 0.000 05
 D. -0.000 05

2. This sequence is geometric: 2, -6, 18, -54, \ldots

 a) Write a rule to determine the \(n \)th term.

 Use: \(t_n = t_1 r^{n-1} \)
 Substitute: \(t_1 = 2, r = -3 \)
 \(t_n = 2(-3)^{n-1} \)

 b) Use your rule to determine the 10th term.

 Use: \(t_n = 2(-3)^{n-1} \)
 Substitute: \(n = 10 \)
 \[t_{10} = 2(-3)^{9} \]
 \[t_{10} = -39366 \]
 The 10th term is \(-39366\).
3. Use the given data about each geometric sequence to determine the indicated value.

a) \(t_4 = -5 \) and \(t_7 = 135 \); determine \(t_1 \)

Use \(t_n = t_1r^{n-1} \) to determine \(r \).
First substitute: \(n = 4, t_n = -5 \)
\(-5 = t_4r^{4-1} \) ①
Then substitute: \(n = 7, t_n = 135 \)
\(135 = t_7r^{7-1} \) ②

Write equation ② as: \(135 = t_1r^7(r^3) \)
From equation ①, substitute \(t_7r^3 = -5 \)
\(135 = -5r^3 \) Divide by \(-5\).
\(-27 = r^3 \)
\(r = \sqrt[3]{-27} \)
\(r = -3 \)

Substitute \(r = -3 \) in equation ①.
\(-5 = t_1(-3)^3 \)
\(t_1 = \frac{5}{27} \)

b) \(t_1 = -1 \) and \(t_4 = -19683 \); determine \(r \)

Use: \(t_n = t_1r^{n-1} \)
Substitute: \(n = 4, t_4 = -19683, t_1 = -1 \)
\(-19683 = -1r^{4-1} \)
\(-19683 = -1r^3 \)
\(19683 = r^3 \)
\(r = 27 \)

6.2

4. Multiple Choice The sum of the first 5 terms of a geometric series is \(\frac{121}{81} \). The common ratio is \(\frac{1}{3} \). What is the 2nd term?

A. \(\frac{1}{3} \)
B. 1
C. \(\frac{121}{3} \)
D. \(\frac{1}{9} \)

5. Use the given data about each geometric series to determine the indicated value.

a) \(t_1 = -4, r = 3 \);
determine \(S_3 \)

Use: \(S_n = \frac{t_1(1 - r^n)}{1 - r} \), \(r \neq 1 \)
Substitute: \(n = 5, t_1 = -4, r = 3 \)
\(S_3 = \frac{-4(1 - 3^3)}{1 - 3} \)
\(S_3 = -484 \)

b) \(3125 + 625 + 125 + \ldots + \frac{1}{25} \);
determine \(n \)

\(r = \frac{625}{3125} = \frac{1}{5} \)
Use: \(t_n = t_1r^{n-1} \)
Substitute: \(t_n = \frac{1}{25}, t_1 = 3125, r = \frac{1}{5} \)
\(\frac{1}{25} = 3125 \left(\frac{1}{5}\right)^{a-1} \)
\(\frac{1}{78125} = \left(\frac{1}{5}\right)^{a-1} \)
\(\left(\frac{1}{5}\right)^7 = \left(\frac{1}{5}\right)^{a-1} \)
\(7 = n - 1 \)
\(n = 8 \)
6. The diagram shows a path of light reflected by mirrors. After the first path, the length of each path is one-half the preceding length.

a) What is the length of the path from the 4th mirror to the 5th mirror?

The lengths of the paths, in centimetres, form this geometric sequence: 100, 50, 25, 12.5, 6.25, . . .
The length of the path from the 4th mirror to the 5th mirror is the 5th term: 6.25 cm

b) Use sigma notation to represent this situation with a geometric series.

The first term is 100 and the common ratio is 0.5.
In sigma notation, the series is: \(\sum_{k=1}^{n} 100(0.5)^{k-1} \) or \(\sum_{k=1}^{n} 200(0.5)^{k} \)

c) To the nearest hundredth of a centimetre, what is the total length of the path from the 1st mirror to the 10th mirror? Justify your answer.

The total length of the path is the sum of the first 10 terms of this geometric series: 100 + 50 + 25 + 12.5 + 6.25 + . . .
Use: \(S_{n} = \frac{t_{1}(1 - r^{n})}{1 - r} \), \(r \neq 1 \)
Substitute: \(n = 10, t_{1} = 100, r = 0.5 \)
\(S_{10} = \frac{100(1 - 0.5^{10})}{1 - 0.5} \)
\(S_{10} = 199.8046 \ldots \)
The path is approximately 199.80 cm long.