Lesson 2.3 Math Lab: Assess Your Understanding, pages 112–114

1. Without graphing, predict the number of vertical asymptotes of the graph of each reciprocal function. Identify the equation of each asymptote.
 a) \(y = \frac{1}{(x + 2)(x - 4)} \)

 The \(x \)-intercepts of the related quadratic function are \(-2\) and \(4\).
 There are 2 vertical asymptotes: \(x = -2 \) and \(x = 4 \)

 b) \(y = \frac{1}{(-3x + 1)^2} \)

 The \(x \)-intercept of the related quadratic function is \(\frac{1}{3} \).
 There is 1 vertical asymptote: \(x = \frac{1}{3} \)

 c) \(y = \frac{1}{x^2} \)

 The \(x \)-intercept of the related quadratic function is \(0\).
 There is 1 vertical asymptote: \(x = 0 \)

 d) \(y = \frac{1}{4x^2 + 3} \)

 The related quadratic function has no \(x \)-intercepts.
 There are no vertical asymptotes.

2. Look at your answers to question 1. When the equation of a reciprocal quadratic function is given in factored form, how can you tell how many vertical asymptotes its graph will have?

 To tell how many vertical asymptotes the graph of a reciprocal quadratic function will have, I look at the expression in the denominator.
 When the expression cannot be factored, there are no vertical asymptotes.
 When the expression has two identical factors, there is 1 vertical asymptote.
 When the expression has two different factors, there are 2 vertical asymptotes.
3. Graph \(y = a(x - p)^2 + q \) and \(y = \frac{1}{a(x - p)^2 + q} \) on the same screen for 6 different sets of values of \(a, p, \) and \(q \). Sketch what you see on the screen. How can you use the signs of \(a, p, \) and \(q \) to determine the number of vertical asymptotes of the graph of the function \(y = \frac{1}{a(x - p)^2 + q} \)?

When \(a \) is negative, the graph opens down:
If \(q \) is also negative, the related quadratic function has no \(x \)-intercepts, so there are no vertical asymptotes. For example:
\[
y = -2(x - 3)^2 - 1 \quad \text{and} \quad y = \frac{1}{-2(x - 3)^2 - 1}
\]

If \(q \) is positive, the related quadratic function has 2 \(x \)-intercepts, so there are 2 vertical asymptotes. For example:
\[
y = -2(x + 3)^2 + 1 \quad \text{and} \quad y = \frac{1}{-2(x + 3)^2 + 1}
\]

If \(q = 0 \), the related quadratic function has 1 \(x \)-intercept, so there is 1 vertical asymptote. For example:
\[
y = -2(x - 3)^2 \quad \text{and} \quad y = \frac{1}{-2(x - 3)^2}
\]

When \(a \) is positive, the graph opens up:
If \(q \) is also positive, the related quadratic function has no \(x \)-intercepts, so there are no vertical asymptotes. For example:
\[
y = 2(x + 3)^2 + 1 \quad \text{and} \quad y = \frac{1}{2(x + 3)^2 + 1}
\]

If \(q \) is negative, the related quadratic function has 2 \(x \)-intercepts, so there are 2 vertical asymptotes. For example:
\[
y = 2x^2 - 1 \quad \text{and} \quad y = \frac{1}{2x^2 - 1}
\]

If \(q = 0 \), the related quadratic function has 1 \(x \)-intercept, so there is 1 vertical asymptote. For example:
\[
y = 2(x - 3)^2 \quad \text{and} \quad y = \frac{1}{2(x - 3)^2}
\]
4. Predict the vertical asymptotes of the graph of each reciprocal function. Justify your prediction. Graph to check your predictions.

a) \(y = \frac{1}{(x+1)^2 - 9} \)

Since the value of \(a \) is positive and the value of \(q \) is negative, I predict the graph of the reciprocal function will have 2 vertical asymptotes.

\[y = \frac{1}{(x+1)^2 - 9} \text{ is undefined when} \]

\[(x+1)^2 - 9 = 0 \]

\[(x+1)^2 = 9 \]

\[x + 1 = 3 \text{ or } x + 1 = -3 \]

\[x = 2 \quad x = -4 \]

So, the lines \(x = 2 \) and \(x = -4 \) are vertical asymptotes.
The graph shows my prediction is correct.

b) \(y = \frac{1}{(x+1)^2} \)

Since the value of \(a \) is positive and the value of \(q \) is 0, I predict the graph of the reciprocal function will have 1 vertical asymptote.

\[y = \frac{1}{(x+1)^2} \text{ is undefined when} \]

\[(x+1)^2 = 0 \]

\[x + 1 = 0 \]

\[x = -1 \]

So, the line \(x = -1 \) is a vertical asymptote.
The graph shows my prediction is correct.

c) \(y = \frac{1}{-(x+1)^2 + 16} \)

Since the value of \(a \) is negative and the value of \(q \) is positive, I predict the graph of the reciprocal function will have 2 vertical asymptotes.

\[y = \frac{1}{-(x+1)^2 + 16} \text{ is undefined when} \]

\[-(x+1)^2 + 16 = 0 \]

\[-(x+1)^2 = -16 \]

\[(x+1)^2 = 16 \]

\[x + 1 = 4 \text{ or } x + 1 = -4 \]

\[x = 3 \quad x = -5 \]

So, the lines \(x = 3 \) and \(x = -5 \) are vertical asymptotes.
The graph shows my prediction is correct.